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Generation and Thiol Reduction of a "Quinonoid" 
Dihydropterin and an Oxidized Pyrimidine Analogue 

Sir: 

In an effort to determine the exact role of the tetrahydro-
pterin cofactor utilized in the formation of tyrosine from 
phenylalanine and molecular oxygen in the reaction catalyzed 
by phenylalanine hydroxylase1 (E.C. 1.14.16.1), we have been 
investigating the spectral and chemical properties of a "qui
nonoid" dihydropterin and an analogous "quinonoid" oxidized 
pyrimidine, the presumed products derived from the respective 
cefaclors during turnover. The quinonoid compounds also may 
be generated by chemical oxidants including bromine, di-
chlorophenolindophenol,2 and ferricyanide3 as well as perox
idase.4 These species are rapidly reduced to the parent cofactor 
by a variety of reagents, including thiols5 and quinonoid 
dihydropteridine reductase.6 Our results for the thiol reduction 
of the quinonoid compounds implicate the intermediacy of thiol 
adducts presumably at the 4a,8a- and 5,6 positions of the ox
idized pterin and pyrimidine, respectively, during the reduction 
process and provide direct evidence for the existence of a hy-
droxylated derivative at the 5 position of 4-hydroxy-2,5,6-
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Figure 1. UV spectra of 4-hydroxy-2,5,6-triaminopyrimidine (5) (—), the 
product of bromine oxidation of 5 (—), and 2,6-diamino-4,5-dihy-
droxypyrimidine (8) in the presence of a 20-fold excess of dithiothreitol 
(---), in 0.2 M Tris-HCl, pH 8.10. 

triaminopyrimidine during its oxidation by horseradish per
oxidase (E.C. 1.11.1.7). 

When 6,7-dimethyltetrahydropterin (1) is treated with 1 
equiv of bromine, an oxidized pterin species (2)7 is generated 
whose UV spectral characteristics are consistent with those 
attributed to the primary oxidation product of 1 in its phe
nylalanine hydroxylase catalyzed oxidation.2 The reaction of 
2 with excess 2-mercaptoethanol (pH 7.45-8.10, Tris buffer, 
H = 0.2 KCl, 25 0C) gives two products, 1 and 7,8-dihydro-
6,7-dimethylpterin (3). The reaction can be followed by the 

decrease in absorbance at 380 nm. The reductive process at a 
given pH is dependent on the second power of the total thiol 
concentration, independent of buffer, and gives rise to the 
following rate law as shown by the dependence of the rate on 
pH: 

*obsd = fc 2'[RSH] [RSH] 

The kinetics are consistent with the processes outlined in 
Scheme 1, where k2' = k^^k-i = 2.2 X 103 s"1 M" 2 and 
require the intermediacy of an adduct such as 4, derived from 
attack by mercaptoethanol at the 8a carbon. We cannot rule 
out, on the basis of presently available data, formation of an 
analogous 4a adduct. The intermediate resembles that recently 
isolated by Sayer et al.8 in the reaction of l,3-dimethyl-5-
(/>-nitrophenylimino)barbituric acid with thiols and implicated 

Scheme I 

k.(RSH) 3 k2(RSH) 
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by kinetic evidence in the nonenzymic reduction of flavins and 
flavin analogues by thiols.9-12 In the present case the decom
position of 4 to 1 apparently is rate limiting and 4 does not 
accumulate. 

An analogous sequence of reactions was carried out with 
4-hydroxy-2,5,6-triaminopyrimidine (5). The product of 
bromine oxidation, as well as hydrogen peroxide oxidation 
catalyzed by horseradish peroxidase, gave UV spectral changes 
similar to those observed for the conversion of the tetrahy-
dropterin 1 into its quinonoid dihydropterin 2 suggesting the 
formation of 6. It is also noteworthy that 5 has been shown to 
substitute for tetrahydropterin in the reaction catalyzed by 
phenylalanine hydroxylase.13,14 Compound 6 generated by 
bromine oxidation gives rise to biphasic kinetics when treated 
with a large excess (~20-fold) of 2-mercaptoethanol in 0.2 M 
Tris-HCl (M = 1.0 KCl) at 25 0C, pH 7.10, with the reaction 
being monitored at 300 nm, indicative of the buildup and decay 
of an intermediate (7).15 The rate of accumulation of 7mea-

./ i , n2 Br, 

H , r T ^ ' , / ^ H 2 

sured at 350 nm follows a first-order dependence on mercap-
toethanol16 but is independent of buffer concentration yielding 
a second-order rate constant for the reaction of 5 with mer-
captoethanol of 2.6 X 102 M - ' s~'. The decay of 7 also shows 
a first-order thiol dependence yielding a second-order rate 
constant for the reaction of thiol with 7 of 1.5 XlO1 M - 1 s~'. 
The accumulation of 7 contrasts with the greater instability 
of 4. This behavioral difference might reflect a greater stability 
of 2 vs. 6 owing to the bridging ethylene moiety or a difference 
in the position of thiol addition to 2 vs. 6. 

When the hydrogen peroxide-peroxidase catalyzed reaction 
is carried out in 0.2 M Tris, pH 8.10, in the presence of excess 
hydrogen peroxide and a 20-fold excess of dithiothreitol, the 
lriaminopyrimidine (5) is not recycled but is converted into a 
diaminodihydroxypyrimidine. The product is identical in its 
UV and GC-MS behavior with authentic 2,6-diamino-4,5-
dihydroxypyrimidine (8) synthesized by the method of 
Chesterfield et al.'7 Compound 8 shows an absorbance max
imum at 281 nm at both neutral and acidic pH values, whereas 
the \max for 5 is at 264 nm in 0.1 N HCl and 288 nm at pH 
8.10 (Figure I).18 The formation of 8 requires the initial for
mation of a carbinolamine (9) at the 5 position (Scheme II),'9 

which in the absence of the thiol at pH 8.10 eliminates water 
to form a quinonoid species but which can be trapped by thiol 
addition. According to this scheme, excess peroxide and di-

Scheme II 

peroxidase 

thiolthreitoi would lead eventually to complete conversion into 
8, which is the observed phenomenon. It is noteworthy that 
oxidation prior to dithiothreitol addition does not generate 8, 
mandating that the reversible hydration of 6 is negligible under 
these conditions. Thus, when the peroxidase catalyzed oxida
tion is quenched with CN - , followed by addition of excess 
dithiothreitol, the quinonoid oxidation product is reduced back 
to 5. The failure to observe an analogous ring-opened species 
during the oxidation of the tetrahydropterin (1) might be due 
to rapid recyclization or possibly to stereoelectronic factors that 
favor hydroxyl elimination. We note that 8 (10 -4 M) is not 
converted into 5 under our conditions (pH 8.1) in the present 
of 10~' M NH4CI. The finding that electrophilic attack occurs 
at the 5 carbon parallels our observation of electrophilic ad
ditions to the 4a carbon of 5-deaza-6-methyltetrahydropterin20 

and offers some support to an earlier hypothesis that species 
similar to 8 might occur as intermediates in the phenylalanine 
hydroxylase catalyzed reactions.21'22 
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